Universiteiten, IBM en Google werken hard aan de ontwikkeling van de quantumcomputer. Bij Google staan ze naar verluidt op het punt om quantum supremacy te bereiken, het punt waarop gewone computers de quantumcircuits niet meer bijbenen. Wat ligt er bij Google op de testbank? En wat kúnnen we ermee?
We zijn er bijna, volgens sommige berichten. De klassieke computer loopt op zijn laatste benen en legt het binnenkort definitief af tegen de glimmende machines uit de quantumlaboratoria in de wereld. Universiteiten en bedrijven pompen miljoenen in het onderzoek en bouwen ingenieuze systemen met tientallen zogenoemde qubits, de rekeneenheden die de computer zijn kracht geven. Rolt de eerste quantumcomputer binnenkort van de band?
De beloften zijn groot. Met een quantumcomputer kunnen we straks razendsnel wetenschappelijke modellen testen, gigantische databases doorzoeken of de moeilijkste cryptografische sleutels kraken. “Ondanks dit soort berichten gaat dat niet binnen afzienbare tijd lukken”, lacht John Martinis, professor van de Universiteit van Californië in Santa Barbara, waar onderzoekers hun krachten bundelen met Google. “Het bouwen van een quantumcomputer is moeilijk, veel moeilijker dan veel mensen denken.”
Toch gaan Martinis en collega’s het proberen. In hun lab staat een systeem dat nog dit jaar quantum supremacy moet halen. Klinkt indrukwekkend, maar wat houdt het precies in? Hoe snel en hoe bruikbaar is deze eerste ‘superieure’ quantumcomputer?
Op de drempel
Ergens tussen de vijftig en honderd ligt het magische aantal: zo veel qubits zijn nodig om een quantumcomputer te bouwen die naar verluidt sneller is dan een klassieke computer. De experimentele quantumcircuits groeien snel richting dit aantal. In het laboratorium van Martinis en collega’s stond in 2010 een systeem met drie qubits. Dat groeide in 2015 naar negen qubits en afgelopen jaar waren ze bezig met een systeem met 49 qubits. Momenteel is het vlaggenschip de begin deze maand aangekondigde Bristlecone die 72 qubits telt. De onderzoekers denken dat hiermee het eerder genoemde quantum supremacy binnen handbereik is.
Quantum supremacy
Als onderzoekers quantum supremacy bereiken, is het wachten op de berichten met de claim dat de quantumcomputer de klassieke computer definitief heeft verslagen. Is dat terecht? Gaat er werkelijk een wondere wiskundige wereld open waar we razendsnel berekeningen doen waar huidige computers op vastlopen? Martinis denkt dat er weliswaar wat relatief eenvoudige chemische berekeningen te doen zijn met zo’n systeem, maar veel meer hoeven we er op computationeel gebied nog niet van te verwachten.
Maar ho, wacht, hoe het dan zit met die felbegeerde quantum supremacy? Waarom kan een ‘superieure’ quantumchip zich eigenlijk nog geenszins meten met de gigantische supercomputers die in enkele seconden biljarden bewerkingen doen? Waarin zit dan die superioriteit?
Quantum supremacy draait volledig om de ‘controleerbaarheid’ van een quantumcomputer: de mogelijkheid om hem helemaal te checken met een klassieke computer. Om te zien of hun quantumsystemen naar behoren werken – of bijvoorbeeld de qubits goed met elkaar communiceren – vallen onderzoekers nog steeds terug op gewone computersimulaties. “Wij laten een supercomputer al gauw een dag draaien om precies te voorspellen wat er binnen een quantumcircuit gebeurt”, zegt Martinis. “Alleen lopen we met de gestage uitbreidingen van onze systemen tegen de grenzen van die controleerbaarheid aan. Bij quantum supremacy kunnen we een systeem niet meer helemaal doorrekenen.”
Duizend qubits in een qubit
Het blindstaren op aantallen qubits kan verhullen hoe onderzoekers worstelen met de steeds complexere quantumchips. De basisprincipes van de quantumcomputer werken, zoveel is duidelijk (zie kader Quantumrekenen op twee qubits). Maar het sturen, vasthouden en combineren van delicate quantuminformatie in een netwerk met een groot aantal qubits is een uitdaging. En die uitdaging wordt groter naarmate netwerken van qubits groeien.
Hoeveel qubits de eerste quantumcomputer die daadwerkelijk sneller berekeningen kan doen dan een klassieke computer straks heeft, is een lastig vraag. Martinis denkt in ieder geval dat je voor één echt betrouwbare qubit waarschijnlijk al duizend qubits nodig hebt. Dit veelvoud is nodig om het fragiele karakter van quantuminformatie te ondervangen: doorgaans wil die informatie nogal eens verloren gaan door ruis in het systemen. Door veel qubits te laten samenwerken is het mogelijk om de quantuminformatie te corrigeren en correct te houden.
Een quantumcomputer met een respectabele rekenkracht heeft weer een veelvoud van die zogenoemde ‘logische’, foutloze qubits nodig: duizenden, zo niet tienduizenden, afhankelijk van het probleem dat je wilt oplossen. Dat is echt andere koek dan de quantumcircuits die nu op tafel liggen. Terwijl quantum supremacy binnen handbereik is, moeten onderzoekers voor een bruikbare quantumcomputer nog veel verder reiken.