De ‘Nobelprijs’ voor wiskunde 2015 gaat naar twee wiskundigen die onder andere bewezen dat allerlei abstracte objecten die in gekromde ruimtes voorkomen, werkelijk afgebeeld kunnen worden als 3D-plaatjes.
Het komt bijna nooit voor dat een wiskundige die een prestigieuze wiskundeprijs wint, daarvóór al wereldberoemd was. Maar dat geldt wel voor John Nash. Over zijn veelbewogen leven verscheen in 2001 de Holllywoodfilm A Beautiful Mind. Nash ontving in 1994 de Nobelprijs voor economie, voor zijn ontdekking van het Nash-evenwicht in de speltheorie. Rond zijn dertigste kreeg hij steeds meer last van psychoses, en de daaropvolgende dertig jaar werd hij met tussenpozen gedwongen opgenomen in een psychiatrische kliniek, hoewel hij tussendoor soms nog tot wiskundig werk van hoog niveau in staat bleek.
Samen met Louis Nirenberg krijgt Nash nu de Abelprijs (de onofficiële ‘Nobelprijs’ voor wiskunde) voor baanbrekend werk op een heel ander terrein dan de speltheorie. Daarmee is Nash de enige persoon op de wereld die zowel een Nobel- als Abelprijs won.
Nash en Nirenberg werkten veel samen aan ‘baanbrekende bijdragen aan de theorie van niet-lineaire partiële differentiaalvergelijkingen en toepassingen daarvan op de geometrische analyse’. Partiële differentiaalvergelijkingen (pdv) zijn alomtegenwoordig in de natuurkunde. Vrijwel altijd als je iets wilt berekenen dat in de tijd verandert, zul je een differentiaalvergelijking op moeten lossen. Het voorbeeld dat velen nog wel kennen uit de school-natuurkunde is de beweging van een slinger: k*u + d2u/dt2 = 0 waarbij u de uitwijking van de slinger uit zijn evenwichtstoestand is, en d2u/dt2 de tweede afgeleide (2e orde differentiaal) naar de tijd van de uitwijking. Door deze differentiaalvergelijking op te lossen, vind je de positie van de slinger op elk tijdstip.
Gekromde ruimtes
Nash en Nirenberg gebruikten pdv’s ook voor iets heel anders, namelijk om de eigenschappen van abstracte objecten in gekromde ruimtes te ontdekken. De oude Grieken bestudeerden al de eigenschappen van voorwerpen (driehoeken, cirkels, bollen, kegels) in de ons bekende twee- of driedimensionale ruimte. Maar in de negentiende eeuw breidden Gauss en Riemann dat onderzoek uit naar abstracte voorwerpen in gekromde ruimtes. Zo is de som van de hoeken van een driehoek op een (tweedimensionaal) boloppervlak groter dan 180 graden. Hoe zit dat met de som van de hoeken van een piramide in een gekromde driedimensionale ruimte?
De bijdragen van Nash en Nirenberg bevinden zich vooral op het terrein van de zuivere wiskunde. Zulke objecten en ruimtes worden eerst en vooral bestudeerd omdat ze van zichzelf interessant zijn, en interessante connecties hebben met andere takken van wiskunde. Niettemin noemde het Abelcomité als praktische toepassing van hun werk, dat het leidt tot een beter begrip van de stroming van vloeistoffen, zoals water rond brugpijlers of de romp van een schip. Gekromde ruimtes (van vier dimensies) spelen bijvoorbeeld ook een rol in Einsteins Algemene Relativiteitstheorie die zwaartekracht interpreteert als een door een massa plaatselijk gekromde ruimte.
Een belangrijk resultaat van Nash, dat hij samen met de Nederlander Nico Kuiper (overleden in 1994) ontdekte, is het Nash-Kuiper inbeddingstheorema. Dit zegt dat elke abstracte structuur (‘voorwerp’) in een positief gekromde ruimte, isometrisch ingebed kan worden in onze gewone ruimte. ‘Isometrisch’ betekent: zonder vervorming, zonder dat de afstand tussen twee willekeurige punten in het voorwerp verandert.
Een voorbeeld van wat dit betekent zie je in de afbeeldingen hieronder:
Mysterieuze verbanden
Nash (1928) en Nirenberg (1925) zijn beiden hoogbejaard, dus het is maar te hopen dat ze in mei nog in staat zijn om hun prijs in Oslo in ontvangst te nemen. Nash kreeg naarmate hij ouder werd geleidelijk aan minder last van zijn psychotische wanen en leidt nu een min of meer normaal leven. Maar volgens eigen zeggen is met het verdwijnen van zijn ziekte ook zijn vermogen om nieuwe wiskunde te ontdekken verdwenen.
Nirenberg klonk nog helder van geest en energiek tijdens een telefoongesprek vanuit Canada met de presentator van de Abel-ceremonie. Blijkbaar volgt hij de laatste ontwikkelingen nog. “De laatste tijd ontdekken we steeds meer mysterieuze verbanden tussen heel verschillende takken van de wiskunde. Dat is wat wiskunde zo fascinerend maakt, hoewel je het grootste deel van de tijd vast zit, en niet weet hoe je verder moet komen.”